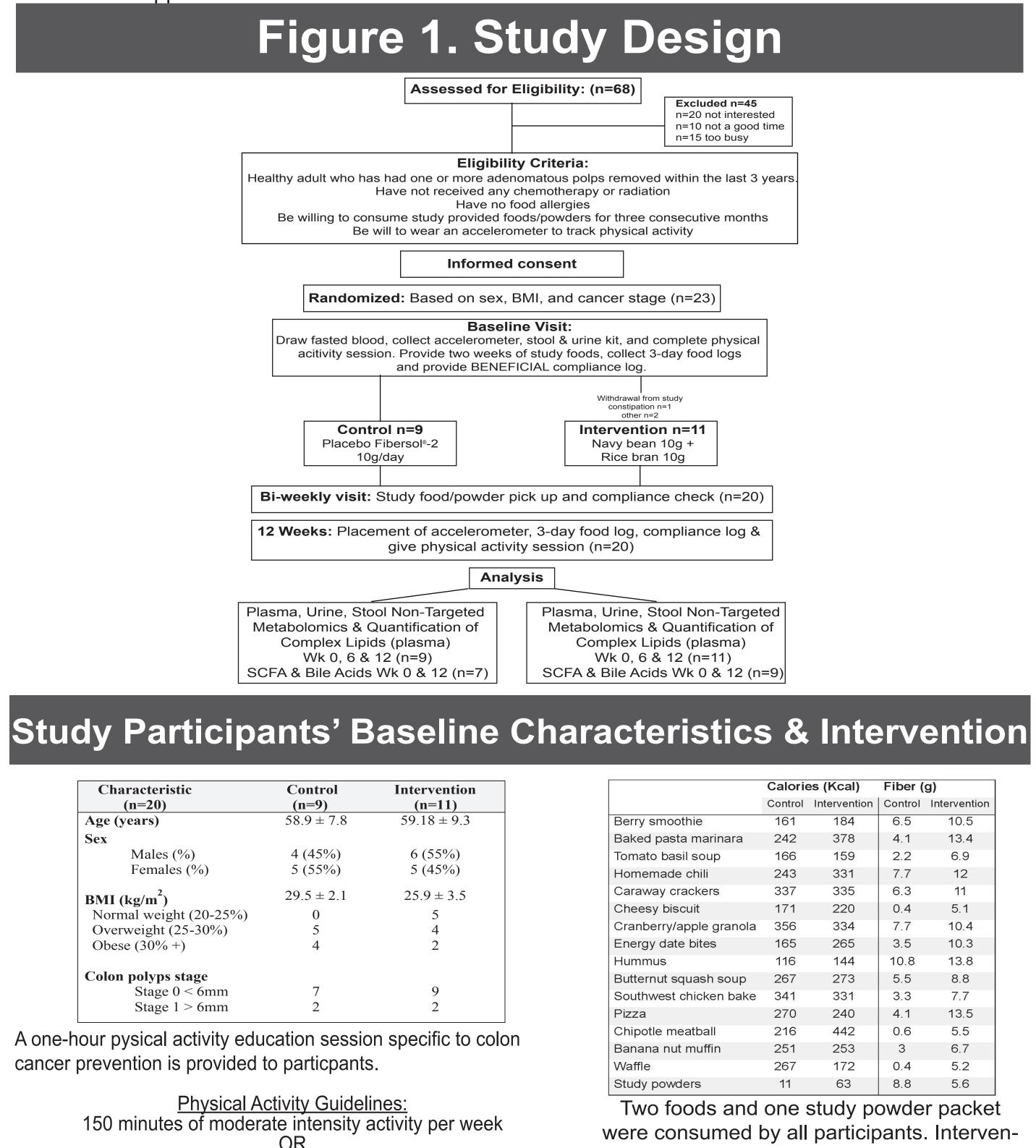
Bean/Bran Enriching Nutritional Eating For Intestinal health & Cancer Including Activitiy for Longevity (BENEFICIAL) Bridget A Baxter^{1,} Melanie N Beale³, Hillary V Smith², Hannah Haberecht¹, Sangeeta Rao⁴, Sarah Hibbs-Shipp⁵ Heather J Leach³ & Elizabeth P Ryan¹

1. Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 2. Colorado School of Public Health, Colorado State University, Fort Collins, Co 80523 3. Department of Health and Exercise Science, College of Health & Human Sciences, Colorado State Uniersity, Fort Collins, CO 80523 4. Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 5. Colorado State University Ventures, Fot Collins, CO 80523

INTRODUCTION

Healthy diet and physical activity substantially reduce the risk of colon cancer and other associated chronic diseases. Navy beans and rice bran fed to mice showed inhibition of colon carcinogenesis and were able to modulate the gut microbiome communities in colorecetal cancer survivors (NCT01929122). Beans/Bran Enriching Nutritional Eating For Intestinal health & Cancer Including Activity for Longevity (BENEFICIAL) is a new human clinical research study designed to idenify whether navy bean and rice bran combined with regular physical activity, can lower the risk of colorectal cancer. National recommendations for colorectal cancer survivors are regular physical activity (150 min/week) and a diet rich in fiber (30g/day). In 2018, a pilot 3-month intervention trial was completed with 23 participants that had one or more polyps removed within the last 3 years. We hypothesized that daily consumption of navy beans and rice bran would improve Healthy Eating Index (HEI) compared to a Fibersol[®]-2 control supplement, and elicit distinct changes to metabolism.

MATERIALS & METHODS


1) <u>Recruitment</u>: Healthy adults who had one or more adenomatous polyps removed within the last 3 years and no cancer diagnosis.

2) <u>Diet Intervention</u>: Participants consumed 1-3 study food items daily for 12 weeks. Recipes and 3-day food logs were analyzed using NutritionistPro[™] diet analysis software. Participants completed 3-day food logs at week 0, week 6 and week 12 during the study, which included recording all foods and drinks consumed on two weekdays and one weekend day. We used ASA24 output to generate a HEI, according to the 2015 Dietary Guidelines for Americans. Rice bran and navy beans were computational additions to ASA24 output for HEI.

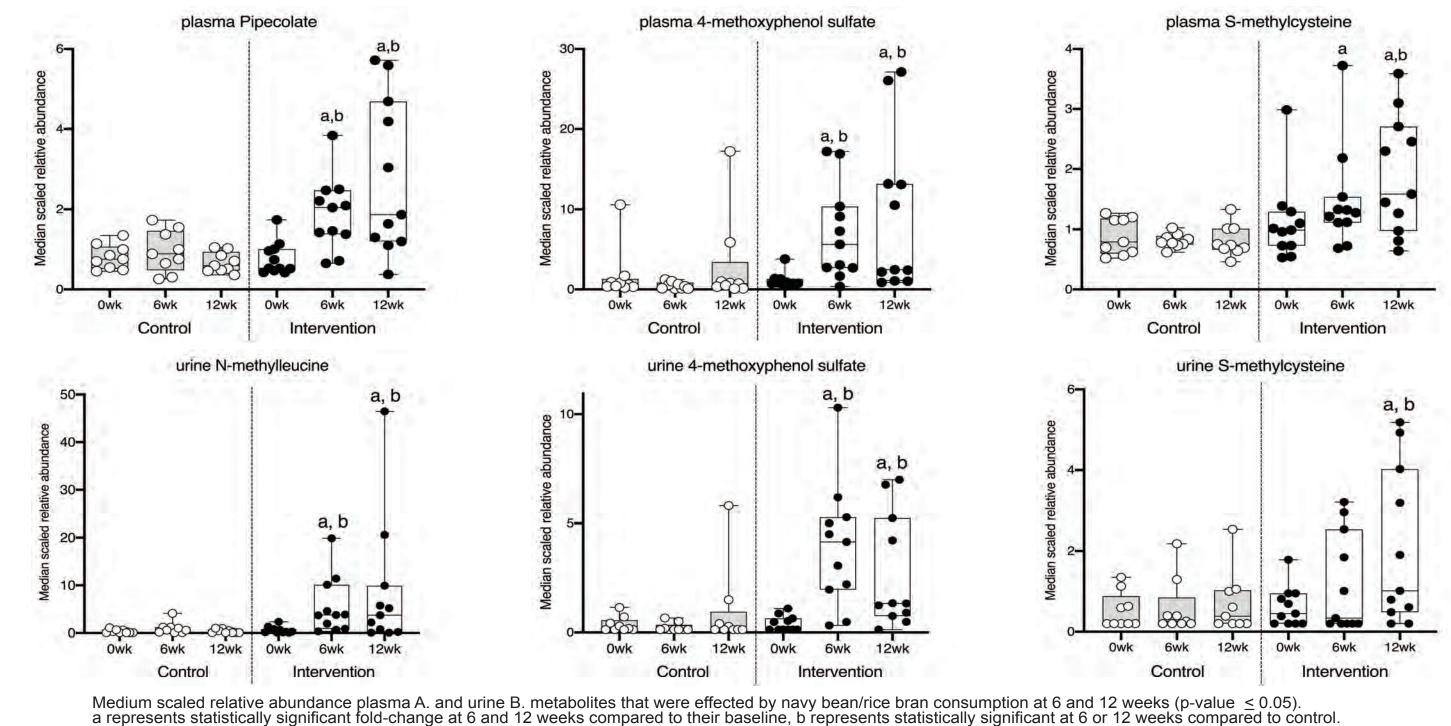
3) **Physical Activity Guidelines:** Participants met with a health and exercise science trained graduate student who provided a one-hour physical activity education session specific to colon cancer prevention.

4) Physical Activity activPal[™]: Moderate to vigours physical activity, light and sedetary minutes was measured for 7-days, 24 hours using an activePal[™] accelerometer at week 0 and 12. 5) Plasma, Urine and Stool Metabolomes: Sample preparation was conducted using 80% methanol extract ion. Metabolomes analyzed by Metabolon, Inc. using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Proteomics and Metabolomics Facility at Colorado State University, quantified stool bile acids and short chain fatty acids using gas chromatography mass spectrometry (GC/MS).

6) <u>Statistical analysis</u>: A repeated measures 2-way ANOVA was applied to analysis of Non-targeted metabolomics and complex lipids. Linear mixed models were applied for SCFA and bile acids (SAS). A p-value of 0.05 was used to evaluate statistical significance. Clinical Trial Approval #17-7464H

75 minutes of vigorous intensity activity per week

Two days of resistance training for at least 30 minutes <u>activePAL</u>^{TN}


The activePAL[™] was used to collect participants physical activity for one week at week 0 & week 12. Worn on the thigh, to quantify free living sedetary, upright and and ambulatory activity, and provides the evidence to link sedentary behaviors to chronic disease

63 8.8 5.6 Two foods and one study powder packet were consumed by all participants. Intervention received 10g rice bran/10g navy bean per meal/snack. Control study foods were macronutrient matched. Study powder packet contains 10g Fibersol[®]-2 (soluble corn fiber) or 10g rice bran/10g navy bean powder. Study powder packets were self-incorporated by participants into daily diet.

RESULTS: Non-Targeted Metabolomics, Quantification of Complex Table 3. Fold change Table 1. Navy bean/rice bran consumption for 6 weeks & 12 weeks modulated plasma & urine profiles, while minimal changes occurred over time in the control group.

		Plasma Fold Ch	nange							
			Control				Intervention			
Super Pathway	Sub Pathway	Biochemical Name	Wk6 Wk0	p-value	<u>Wk12</u> Wk0	p-value	Wk6 Wk0	p-value	<u>Wk12</u> Wk0	p-value
	Lysine	pipecolate	1.17	0.848	0.83	0.467	2.46	0.0004	3.62	0.324
Amino Acids	Tyrosine Metabolism	4-methoxyphenol sulfate	0.27	0.079	1.67	0.958	6.42	0.0008	8.34	0.997
		methionine sulfone	1.04	0.910	0.98	0.616	1.16	0.002	1.20	0.912
	Methionine, Cysteine, SAM and	S-methylcysteine	0.92	0.823	0.92	0.694	1.32	0.097	1.70	0.195
	Taurine Metabolism	S-methylcysteine sulfoxide		0.301	0.85	0.503	1.17	0.271	1.72	0.235
Phytochemicals	Benzoate Metabolism	3-methoxycatechol sulfate (2)	1.19	0.886	1.48	0.579	2.77	0.014	3.31	0.822
Correction Dis Alexandre	Sack Datk-man	Urine Fold Cha	Control			Intervention				
Super Pathway	Sub Pathway	Biochemical Name	Wk6p-valueWk12p-value		Wk6p-valueWk12p-value			p-value		
Amino Acids			Wk0	0 (7712	Wk0	0.226	Wk0	0.112	Wk0	0.474
	Tyrosine Metabolism	phenol sulfate	0.83	0.67713	1.61	0.336	1.5	0.113	1.08	0.474
	T ' T 1 ' 1X7 1'	4-methoxyphenol sulfate	0.55	0.36019	1.47	0.471	7.72	0.000	5.8	0.0005
	Leucine, Isoleucine and Valine Metabolism	N-methylleucine	2.78	0.13223	0.85	0.981	8.95	0.000	11.87	0.0005
	Methionine, Cysteine, SAM and	S-methylcysteine	1.05	0.88568	0.89	0.903	1.44	0.336	2.92	0.002
				-						0.017
	Taurine Metabolism	S-methylcysteine sulfoxide	1.01	0.793	0.99	0.614	1.1	0.504	2.02	0.017
			1.01 1.09	0.793 0.45533	0.99 0.96	0.614 0.977	1.1 1.65	0.504	2.02 1.55	0.0017
Nucleotide	Taurine Metabolism	S-methylcysteine sulfoxide								
	Taurine MetabolismUrea cycle	S-methylcysteine sulfoxide N2,N5-diacetylornithine	1.09	0.45533	0.96	0.977	1.65	0.001	1.55	0.002
Cofactors &	Taurine MetabolismUrea cyclePurine Metabolism	S-methylcysteine sulfoxide N2,N5-diacetylornithine urate	1.09 1.12	0.45533 0.50543	0.96 0.99	0.977 0.888	1.65 1.25	0.001 0.009	1.55 1.34	0.002 0.002
Nucleotide Cofactors & Vitamins	Taurine MetabolismUrea cyclePurine Metabolism	S-methylcysteine sulfoxide N2,N5-diacetylornithine urate gamma-CEHC	1.09 1.12 0.62	0.45533 0.50543 0.69342	0.96 0.99 0.66	0.977 0.888 0.466	1.65 1.25 2.36	0.001 0.009 0.013	1.55 1.34 2.23	0.002 0.002 0.047

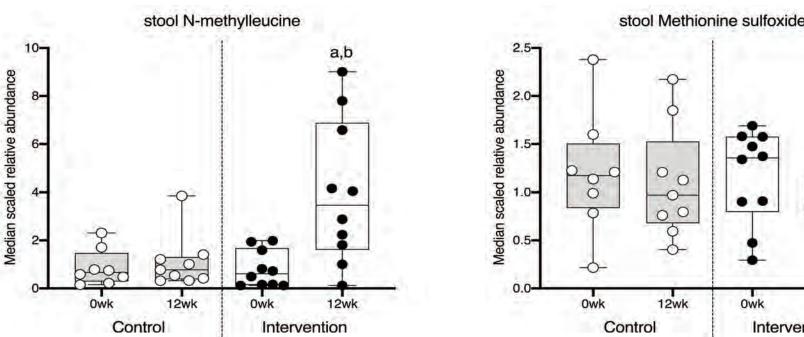
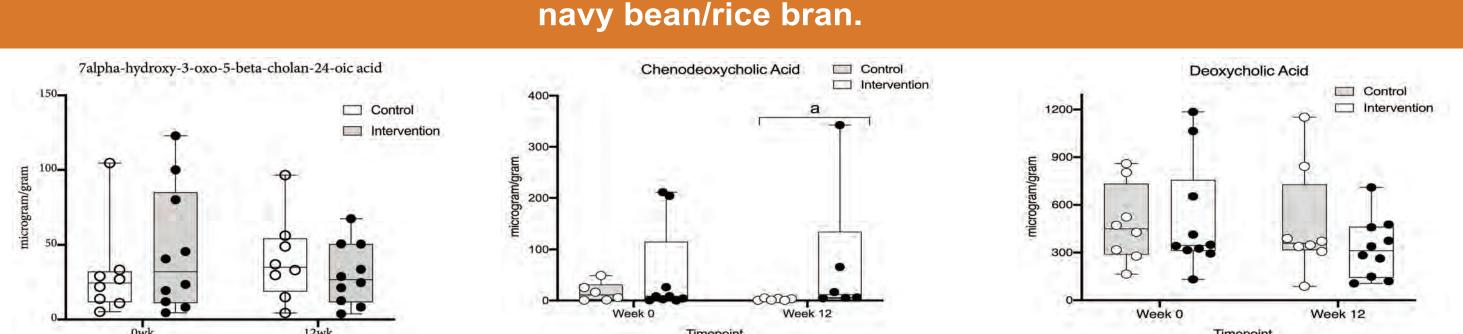

Figure 2. Amino acid metabolites were impacted after 6 and 12 weeks of navy bean/rice bran intake in plasma and urine metabolomes.

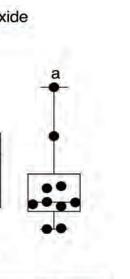
Table 2. Navy bean/rice bran consumption for 12 weeks modulated stool profiles, while minimal changes occurred over time in the control group.

			Control		Intervention	
Super Pathway	Sub Pathway	Biochemical Name	<u>Wk12</u> Wk0	p-value	<u>Wk12</u> Wk0	p-value
Amino Acids	Leucine, Isoleucine and Valine Metabolism	N-methylleucine	1.25	0.919	4.88	0.0005
	Methionine, Cysteine, SAM and Taurine Metabolism	methionine sulfone	0.82	0.073	0.66	0.047
Lipids	Long Chain Polyunsaturated Fatty Acid (n3 and n6)	linolenate [alpha or gamma; (18:3n3 or 6)]	4.93	0.085	10.14	0.045
	Fatty Acid, Dicarboxylate	dodecanedioate (C12-DC)	0.98	0.906	1.83	0.048
		hexadecanedioate (C16-DC)	1.49	0.119	1.83	0.008
	Phospholipid Metabolism	trimethylamine N-oxide	0.65	0.528	0.37	0.047
Nucleotide	Purine and Pyrimidine Metabolism	methylphosphate	1.68	0.435	2.21	0.045
Cofactors & Vitamins	Nicotinate and Nicotinamide Metabolism	nicotinamide	0.65	0.048	2.44	0.026
	L change of the mean relative abundance within control and intervention	I groups at 12 weeks compared to their baseline (p-value≤	0.05). Statis	L stically signific	ant metabol	l lites are b ¢

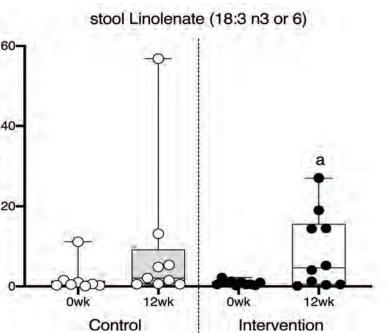
navy bean/rice bran intake in stool metabolomes.



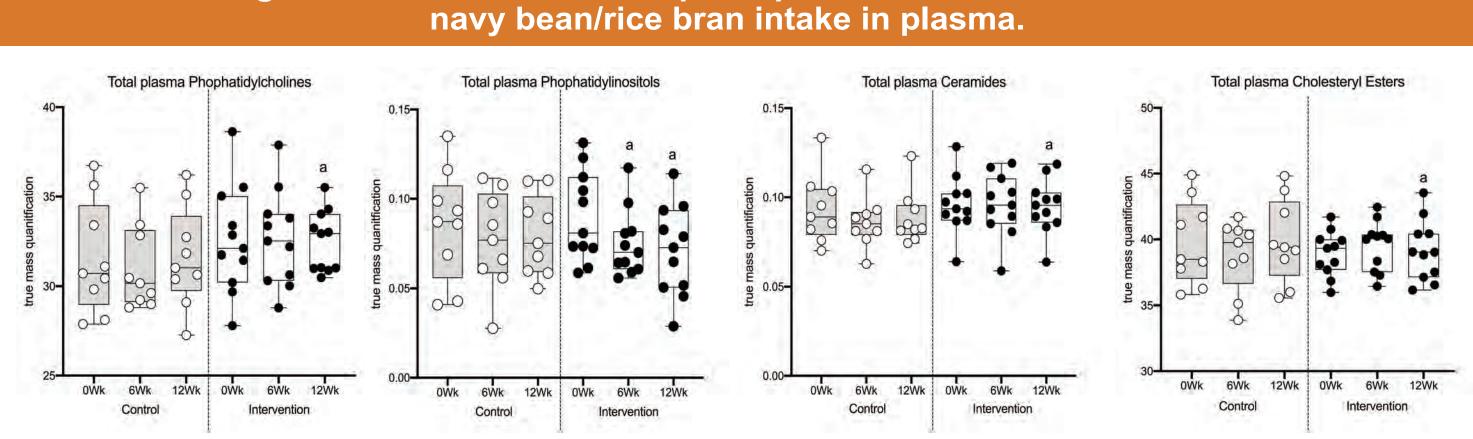
Medium scaled relative abundance stool metabolites that were effected by navy bean/rice bran consumption at 6 and 12 weeks (p-value \leq 0.05). a represents statistically significant fold-change at 6 and 12 weeks compared to their baseline, b represents statistically significant at 6 and 12 weeks compared to control.

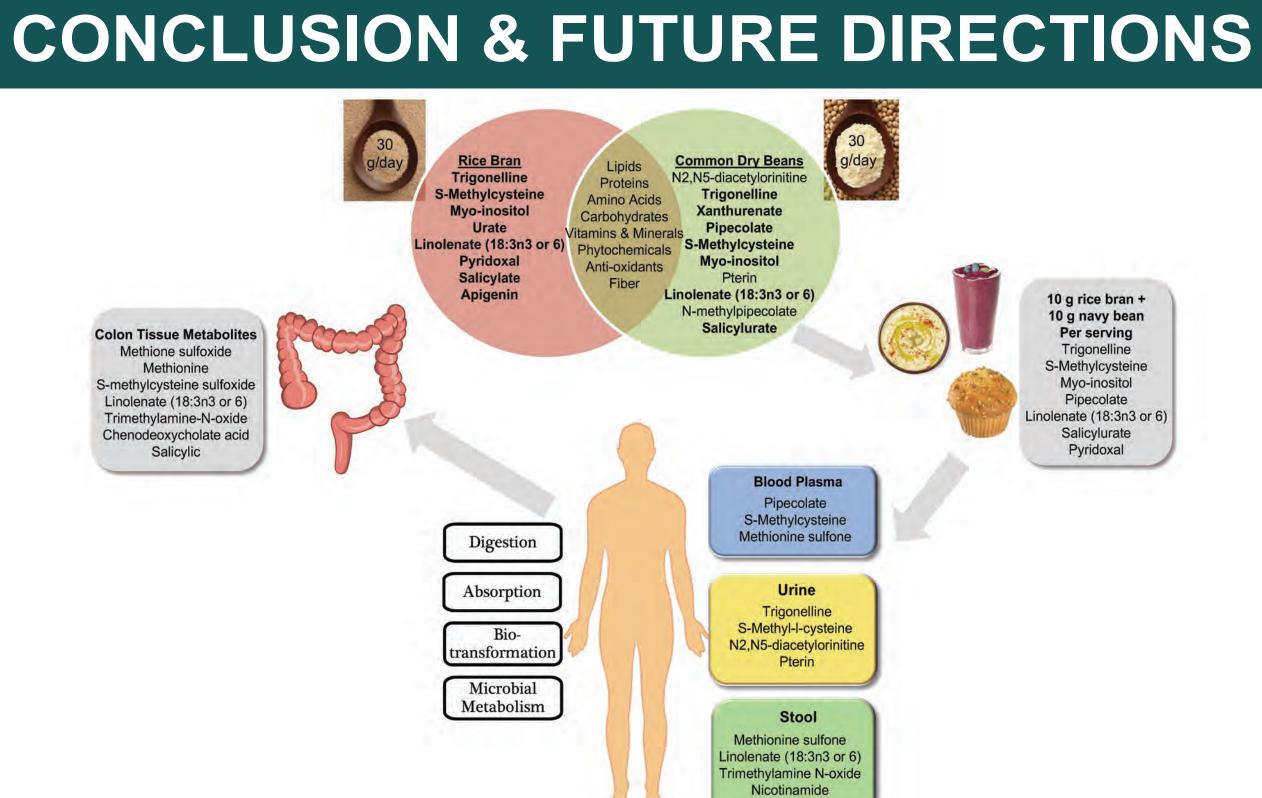

Table 3. Navy bean/rice bran consumption for 12 weeks modulated

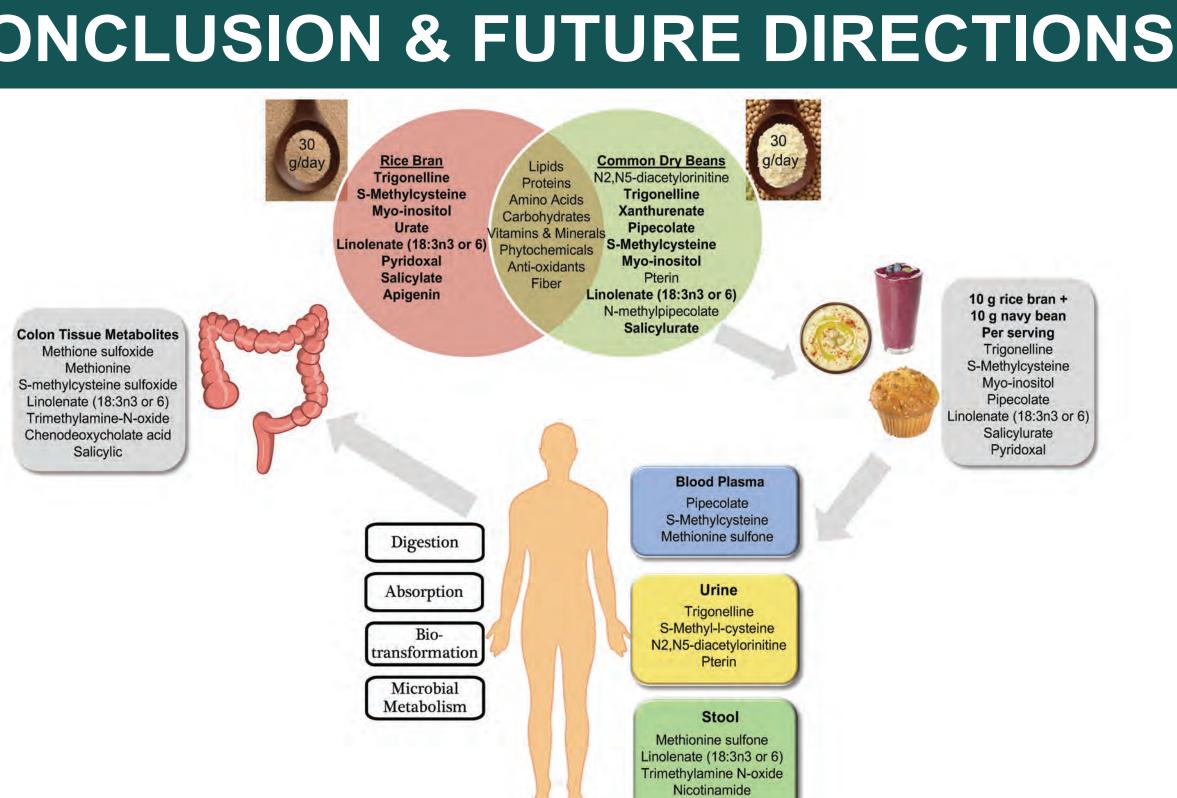
	Control		Interver	<u>Control</u> Intervention		
Bile Acids	Week 0 (n=8)	Week 12 (n=8)	Week 0 (n=9)	Week 12 (n=9)	p-value Week 0	p-value Week 12
Deoxycholic Acid	481 ± 245.1 (450)	470.2 ± 322.3 (325.5)	404.2 ± 364.2 (325.5)	328.13 ± 364.2 (325.5)	0.25	0.31
Chenodeoxycholic Acid	16.5 ± 15.8 (16.4)	5.4 ± 6.5 (3.4)	42.8 ± 73.8 (16.5)	50.7 ± 104.1 (16.5)	0.91	0.005
3_Oxocholic Acid	$1.6 \pm 1.5(1.1)$	$1.1 \pm 0.85 (1.1)$	4.3 ± 3.9 (3.4)	$17.3 \pm 14.6 (25.5)$	0.32	0.022
Glycocholic Acid	4.3 ± 8.4 (1.8)	$1.2 \pm 0.81 (0.97)$	$2.9 \pm 3 (1.7)$	3.5 ± 5 (1.29)	0.7	0.38
Taurodeoxycholic Acid	0.86±0.6(1.24)	$1.5 \pm 1.5 (1.21)$	5.0 ± 13.1 (1.21)	0.94 ± 0.73 (0.72)	0.63	0.68
7alpa-Hydroxy-3-oxo-5beta-cholan- 24-oic acid	30.73 ± 31.38 (24.4)	40.3 ± 26.4 (37)	3138.63±11184.6 (19.37)	30.2 ± 2064 (26.7)	0.58	0.45


Values presented are mean <u>+</u> standard deviation (median). P-values represent control compared to intervention groups at 0 and 12 weeks (p< 0.05). SAS was used for all statistical analyses. Statistically significant metabolites are **bold**. Figure 4. Stool bile acid metabolites were impacted after 12 weeks of

Kcal)	Fiber (g)				
ervention	Control	Intervention			
184	6.5	10.5			
378	4.1	13.4			
159	2.2	6.9			
331	7.7	12			
335	6.3	11			
220	0.4	5.1			
334	7.7	10.4			
265	3.5	10.3			
144	10.8	13.8			
273	5.5	8.8			
331	3.3	7.7			
240	4.1	13.5			
442	0.6	5.5			
253	3	6.7			
172	0.4	5.2			


Intervention


Quantified stool bile acid metabolites that were impacted by navy bean/rice bran consumption at 12 weeks (p-value < 0.05), a represents statistically significant fold-change at 12 weeks compared to their baselin


Biochem Sub Pathway Name Phosphatidylcholines Total P Phosphatidylinositols Total I

Ceramides Total Cl Cholesteryl Esters Total C

quantification of complex lipids in plasma that were impacted by navy bean/rice bran consumption at 6 and 12 weeks (p-value \leq 0.05). a represents statistically significant fold-change at 6 and 12 weeks compared to their baseline.

Next we will enroll a larger study cohort, examine the impact of lifestyle for 6 months (increased fiber and physical activity) on right and left colon tissue metabolites and develop biomarkers for colon cancer risk reduction.

intake and controlling for physical activity. bran intake.

• Navy bean/rice bran intervention group decreased total plasma cholesteryl ester (CE) over time when compared to no change in the control group. • The reduction in total phosphatidylcholines (PC), phosphatidylinositols (PI) and ceramides (CER) following the navy bean/rice bran intervention merit additional attention as biomarkers for reducing colorectal cancer risk. The increase in pipecolate and S-methylcysteine in plasma metabolomes merit additional attention as biomarkers of intake for navy bean and rice bran.

Metabolite Profile Comparisons Between Ascending and Descending Colon Tissue in Healthy Adults. Bridget A. Baxter, Kristopher D. Parker, Michael J. Nosler, Sangeeta Rao, Rebecca Craig, Catherine Seiler and Elizabeth P. Ryan. Department of Radiological Sciences, Colorado State University, Fort Collins, CO 80521, USA World Journal of Gastroenterology 2020 Jan 21; 26(3): 335-352.

This work was funded by University of Colorado Cancer Cente (P30CA046934), Colorado School of Public Health provided a Graduate Research Associate student funds. Human Performance Clinical Research Lab at CSU provided space to conduct the study. We would like to thank the research staff at University Colorado Health Cancer Center for assisting in recruitment. Lastly a big thank to our BENEFICIAL participants.

Lipids (Plasma) & Stool Bile Acids									
s in complex lipid from plasma after 6 and 12 weeks of navy bean/rice bran consumption.									
Control				Intervention					
<u>Wk6</u> Wk0	p- value	<u>Wk12</u> Wk0	p- value	<u>Wk6</u> Wk0	p- value	<u>Wk12</u> Wk0	p- value		
1.06	0.209	0.98	0.817	0.95	0.195	0.92	0.032		
0.92	0.677	0.92	0.616	0.80	0.029	0.72	0.001		
1.01	0.806	0.95	0.195	0.94	0.183	0.90	0.036		
1.06	0.299	0.99	0.812	0.96	0.336	0.92	0.043		
	omplex bean/ri <u>Wk6</u> <u>Wk0</u> 1.06 0.92 1.01	with one of the second residual	Wk6 p- Wk12 Wk0 0.209 0.98 0.92 0.677 0.92 1.01 0.806 0.95	Wk6 Wk0 p- value Wk12 Wk0 p- value p- value 1.06 0.209 0.98 0.817 0.92 0.677 0.92 0.616 1.01 0.806 0.95 0.195	Wk6 Wk0 p- value Wk12 Wk0 p- value Wk6 Wk0 p- value Wk6 Wk0 p- value Wk6 Wk0 p- value Wk6 Wk0 p- value Wk6 Wk0 p- value 0.95 0.95 0.92 0.616 0.80 0.94 0.94	Wk6 Wk0 p- value Wk12 Wk0 p- value Wk6 Wk0 p- value Wk6 Wk0 p- value Wk6 Wk0 p- value Vk6 Wk0 p- value 1.06 0.209 0.98 0.817 0.95 0.195 0.92 0.677 0.92 0.616 0.80 0.029 1.01 0.806 0.95 0.195 0.94 0.183	Mathematical Systems Control Intervention Wk6 p- value Wk12 Wk0 p- value Wk6 Wk0 p- value Wk12 Wk0 p- value Wk6 Wk0 p- value Wk12 Wk0 1.06 0.209 0.98 0.817 0.95 0.195 0.92 0.92 0.677 0.92 0.616 0.80 0.029 0.72 1.01 0.806 0.95 0.195 0.94 0.183 0.90		

Values presented are fold-change of the mean relative abundance within control and intervention groups at 6 and 12 weeks compared to their baseline (p < 0.05). Statistically significant metabolites are **bold**.

Figure 5. Quantification complex lipids after 6 and 12 weeks of

RESULTS

• We demonstrated pilot feasability of modulating metabolism following dietary fiber

• Complex lipids in blood were impacted after 6 and 12 weeks of navy bean/rice

REFERENCE

ACKNOWLEDGEMENTS